Космический «фуникулер»

Трос толщиной со вселенную


С самого появления идеи космического лифта было ясно, что имеющиеся в распоряжении человека материалы не выдержат безумных нагрузок, которые испытает «паутинка», спущенная из космоса. Согласно полученным уравнениям, толщина оптимальной привязи по мере удаления от Земли сперва экспоненциально растет, затем на высоте двух-трех земных радиусов, по мере того, как силу земного притяжения компенсирует центробежная сила, рост толщины замедляется, и наконец вблизи геостационарной орбиты толщина становится постоянной.

Ключевой вопрос технологии космического лифта: насколько толстым станет канат в верхней точке. Расчеты показывают, что его толщина фантастически сильно зависит от свойств материала — его прочности и плотности. Если использовать обычную сталь (плотность 7,8 г/см3 , усилие на разрыв 2 гигапаскаля, что соответствует давлению 20 тысяч атмосфер), то расчетная толщина превысит видимые размеры Вселенной, что попросту лишает расчет физического смысла. Даже из лучших марок стали (5 ГПа) построить космический лифт совершенно нереально. Но если в несколько раз поднять прочность и снизить плотность материала, результат меняется кардинально.
Например, с уже известными человечеству материалами — паучьим «шелком» (1,3 ГПа при плотности 1,2 г/см3), углеродистым стекловолокном (2—5 ГПа при 1,9 г/см3), кевларом (3,6 ГПа, 1,4 г/см3) — толщина троса в верхней части получается от сотен километров до всего десятка метров. Впрочем, с инженерной и экономической точек зрения подобный проект все равно малореален. Собственно, именно отсутствие подходящих материалов и привело к тому, что на долгое время космические лифты обосновались исключительно на страницах фантастической литературы.
Второе дыхание идея космического лифта получила с появлением в 1991 году принципиально новых материалов — углеродных нанотрубок. Это протяженные цилиндрические структуры диаметром в считанные нанометры. Их можно описать как свернутые в тонкую трубочку плоские листы графита мономолекулярной толщины (хотя в реальности нанотрубки образуются иначе). В плоскости графитового слоя атомы углерода соединены в характерную гексагональную (шестиугольную) решетку, обладающую высокой прочностью, которую унаследовали и нанотрубки. По своей устойчивости на разрыв они более чем на порядок превосходят сталь и при этом имеют в шесть раз меньшую плотность. Нитка миллиметрового диаметра, состоящая из нанотрубок, теоретически могла бы выдержать груз в 60 тонн (усилие на разрыв 60 ГПа) и даже больше — самая оптимистичная приводимая в специальной литературе цифра составляет 300 ГПа.
Загвоздка, однако, в том, что сегодня никто не умеет изготавливать из нанотрубок нитки. Трубки, которые удается получить, имеют длину, измеряемую микронами, в лучшем случае — миллиметрами, и нет никаких гарантий, что параметры нитей из нанотрубок действительно когда-нибудь достигнут теоретических показателей. Во-первых, даже самая лучшая нить будет, конечно же, заметно менее прочной, чем отдельные ее волокна. Во-вторых, на прочность трубок самым плачевным образом влияют дефекты кристаллической решетки. Согласно мнению некоторых ученых, именно эти неизбежные дефекты станут непреодолимым препятствием для космического лифта. Ведь даже если в идеальных условиях мы и научимся изготавливать безупречные волокна, то повреждения от микрометеоритов и космических лучей, эрозия под действием атмосферного кислорода могут свести все усилия на нет.
Если мы попробуем подставить в формулы параметры углеродных нанотрубок, то верхняя часть троса получается всего на 20—50% толще нижней. Это значит, что трос в форме ленты толщиной с лист бумаги даже в самом широком месте не будет превосходить нескольких десятков сантиметров.
Подъемник, построенный командой Мичиганского университета (справа), впервые поднялся на высоту 60 метров, получая энергию только от солнечных батарей. На это ушло 6 минут 40 секунд при зачетном времени 1 минута. Самым быстрым стал подъемник, созданный в Университете провинции Саскачеван (Канада). Он лишь на пару секунд не уложился в отведенный норматив. На снимке внизу: последние приготовления перед запуском канадского прототипа космического лифта. Обратите внимание, что для подъема используется не трос, а тонкая широкая лента. Это избавляет от проблем с ориентацией аппарата

Подъем на лазерном луче


Другая важнейшая проблема, которую предстоит решить, — это создание быстрых и легких подъемников, способных взобраться по тросу по крайней мере на 36 тысяч километров (на высоту геостационарной орбиты). Собственно, сложность заключается в отсутствии достаточно энергоемких источников питания. Ведь энергозатраты на преодоление земного притяжения на пути до геостационарной орбиты составляют 49 мегаджоулей на килограмм (это не считая неизбежных потерь энергии). Для сравнения: при сжигании килограмма водород-кислородной топливной смеси выделяется всего 16 МДж. Это не значит, что на химическом топливе космический лифт не сможет работать в принципе, но по эффективности своей работы он тогда сравнится с теми же ракетами, вынужденными для выведения полезной нагрузки сжигать огромное количество топлива и сбрасывать отработавшие ступени. Еще хуже с аккумуляторами, которые, разумеется, каждый раз на пути к звездам сбрасывать не получится. Хотя тут тоже может быть уловка: кабины, идущие вниз, могут делиться выработанной при спуске электроэнергией со своими встречными партнерами. Но все это накладывает на организаторов грузопотока слишком жесткие ограничения.
Поэтому питание для своей работы (во всяком случае, на первых порах) лифт будет получать в основном с Земли. Изобретатель концепции космического лифта Юрий Арцутанов предлагал подводить электричество по вплетенным в канат металлическим полосам. Однако на нынешнем этапе эта идея не кажется столь привлекательной, поскольку усложняет конструкцию троса.
Наиболее перспективной представляется передача энергии направленными пучками видимого или СВЧ-излучения, для которого земная атмосфера прозрачна. Чтобы расходимость пучка была минимальной, можно, например, использовать лазеры. Впрочем, передать энергию — это полдела, нужно ее еще и принять. Для этого необходимо снабдить лифт высокоэффективными фотоэлектрическими преобразователями.
Интересно, что многие принципиальные сложности, связанные с устройством дороги с Земли на орбиту, пропадают (или же теряют свою остроту), если искать применение «лифтовому хозяйству» в дальнем космосе, на что указывал опять же еще Арцутанов. Ведь с гравитацией астероидов, спутников планет или даже Марса вполне могут справиться нынешние материалы и энергетические установки. Не исключено, что первые конструкции такого типа возникнут где-нибудь возле Луны. Ее медленное вращение, правда, не позволяет использовать ту же схему, что и с земной геостационарной орбитой, но конец троса с грузом можно поместить, например, в точку либрации между Луной и Землей. Такой лифт будет длиннее земного, но требования к нему предъявляются не столь жесткие.

Космическое ткачество


Предположим, что проблемы с материалом и энергетикой благополучно разрешены. Но ведь надо еще каким-то образом построить сам космический лифт. Если изготовить трос на Земле, то ракетные технологии вряд ли позволят целиком забросить его на орбиту. Даже если выводить трос в космос по частям, стоимость проекта надолго сделает лифт нерентабельным — ведь масса материала может достигать многих тысяч тонн. Еще Арцутанов предложил начать с небольшой спущенной с небес «нитки». Но как спустить с геостационарной орбиты первую, хотя бы и очень тонкую нить? Нужно, конечно же, выпускать сразу два «уса» — в противоположных направлениях, к Земле и от нее, — с тем расчетом, чтобы сам спутник в процессе вытравливания этого троса не смещался с нужной орбиты. При движении на трос будет действовать сила Кориолиса, отклоняющая его от вертикального направления, а на начальном участке нить вообще будет покоиться в невесомости. Поэтому ее движением, вероятно, придется какое-то время управлять с помощью небольших двигателей коррекции.
Противовес космического лифта, находящийся на высоте геостационарной орбиты, обеспечивал бы постоянное натяжение конструкции
Когда нить достигнет Земли, по ней взберутся первые роботы-строители, которые примутся наращивать толщину каната уже на месте. В принципе эти «паучки» могут быть самых что ни на есть микроскопических размеров. Возможно, к тому времени, когда развернется космическая стройка, нанороботы, которые сегодня кажутся нам едва ли не большей фантастикой, чем сам лифт с Земли на небо, уже станут реальностью, и достаточно будет просто их запрограммировать. Эти же невидимые труженики-нанороботы могли бы подновлять материал, устраняя постоянно возникающие дефекты и повреждения. Кстати, если развитие нанотехнологий пойдет в соответствии с оптимистичными прогнозами, то должны появиться и саморазмножающиеся нанороботы. Вся стоимость космического лифта будет тогда определяться лишь услугами проектировщиков и программистов, ну и изготовлением первичной нити. Надо только побеспокоиться о безопасности применения нанороботов «на свежем воздухе» — исключить неконтролируемое размножение, мутации и т. п. Если это будет сделано, лифты вообще станут «самособирающимися» и самообслуживающимися и органично впишутся в ландшафт грядущего века нанотехнологий.
Впрочем, целый ряд серьезных проблем остается и после успешного построения космического лифта — на стадии эксплуатации. Определенное беспокойство специалистам, следящим за целостностью нитей, может доставлять различный космический мусор. Банальные грозы с ураганами или обледенение могут повредить нижний, самый тонкий участок троса, а поскольку вверху он только утолщается, нельзя восстановить обрыв, просто немного приспустив трос. В число возможных бед включают и собственные колебания гигантской «струны», которые могут привести к ее разрушению. У проблемы построения дороги на небо есть также определенные военные и политические аспекты. Достаточно представить, насколько привлекательной мишенью для террористов станет такое гигантское хрупкое сооружение!
Допустив на минуту, что все сложности удалось обойти, и посчитав возможную выгоду от этого предприятия, мы сразу поймем энтузиазм NASA. Ведь с приходом лифтов себестоимость поднятия килограмма на высоту геостационарной орбиты составит от нескольких долларов (согласно оптимистичным оценкам) до сотен долларов (по самым пессимистичным). Сравните это с тысячами и десятками тысяч долларов за килограмм при современных ракетных технологиях. По мнению Брэдли Эдвардса, одного из основателей компании HighLift Systems, которой NASA выделило финансирование для исследований по проблеме космического лифта, на реализацию проекта потребуется от 10 до 40 миллиардов долларов — сравнимо с разработкой новых шаттлов. Если верить этой оценке, то затраты с лихвой окупятся уже за первые десятилетия эксплуатации нового чуда техники.

Космический лифт в фантастике


— Артур Кларк (Великобритания), «Фонтаны рая» (1978). Русский перевод — 1980.
— Чарльз Шеффилд (США), «Паутинка между мирами» (1979) — роман содержит подробное описание космического лифта. На русский язык не переводился.
— Ким Стэнли Робинсон (США), трилогия «Цветной Марс» (начиная с 1992) — история марсианского и земного лифтов от американского лауреата премий «Небьюла» и «Хьюго»; тросы лифтов изготавливаются из углеродных нанотрубок, которые вырабатываются на астероиде, а затем погружаются в атмосферу, астероид при этом используется как противовес.
— Фредерик Пол и Томас Т. Томас (США), «Марс Плюс» (1994) — в качестве «лифта» на Марсе фигурирует так называемый космический фонтан, непрерывно выбрасывающий металлические кольца. Роман переведен на русский язык.
— Дэвид Геррольд (США), «Соскочить с планеты» (1998). В ближайшем будущем мир разделят между собой гигантские корпорации, а в Западном полушарии построят космолифт. С помощью него на геостационарную орбиту сбегает 13-летний мальчик Чарльз.
— Павел Шумил (Россия), «Должны любить» (2002). В романе фигурирует привязь, спущенная с объекта на геостационарной орбите и прикрепленная на экваторе планеты. С ее помощью планету разворачивают, чтобы растопить ледяные материки. Герои Шумила вспоминают «Фонтаны рая» Кларка, но, похоже, к звездам в том мире путешествуют без применения космического лифта.
— Александр Громов (Россия), «Завтра наступит вечность» (2002). Космический лифт, затерянный где-то на задворках Москвы, уживается со всей неустроенностью нашей жизни. Правда, у лифта там «нормальный» сверхпрочный трос заменяет некий «энергошнур». При подъеме герои также вспоминают книгу Артура Кларка.
— Бен Бова (США), «Меркурий» (2005). Изображен случай нападения террористов на космический лифт, из-за которого погибают миллионы людей. Перевода на русский язык еще нет.
Идея космического лифта нашла также свое отражение в кинофильмах, телесериалах, мультфильмах, аниме... Например, в сериале «Стар Трек» (эпизод «Подъем» четвертого сезона подсерии «Вояджер», 1995) грузовой космический лифт служит средством спасения для экипажа звездолета, застрявшего на планете с буйной турбулентной атмосферой. В аниме-фильме «GUNNM: Боевой Ангел Алита» (1993) японского художника Йокито Киширо зрителям удается полюбоваться остатками разрушенного космического лифта, нависающего над городской свалкой. В замечательном французском мультфильме «Каена: Пророчество» (2003) в качестве космолифта выступает гигантское дерево, уходящее корнями на орбиту. Космический лифт проник и в некоторые компьютерные игрушки. Например, он фигурирует на одном из последних уровней известной экономической реал-тайм стратегии «Civilization: Call To Power». Так что фантасты успели поработать над развитием идеи космического лифта ничуть не меньше, чем «безумные» инженеры.

Нашествие лифтеров


Уже второй год подряд группы энтузиастов со всех концов света собираются для того, чтобы продемонстрировать свои разработки в области «космического лифтостроения» и попытаться выиграть X Prize Cup, учрежденный при содействии NASA. При этом часть групп привозит роботизированные «вагончики», ползающие по канату и получающие энергию от фотоэлементов, а другие демонстрируют образцы материалов, достаточно легких и прочных, чтобы выдержать свой собственный вес и вес движущихся по ним механизмов. Все эти проекты объединены одной целью: подготовить первые ступеньки той лестницы, по которой мы поднимемся прямо на небеса...
Участники должны были предъявить робота весом не более 50 килограммов, который ползал бы по тонкому вертикальному канату длиной 50 метров со скоростью 1 метр в секунду, питаясь дистанционно от 10-киловаттного прожектора (требования пока достаточно скромные), а также образец материала для троса, превосходящего по своей прочности образец, уже имеющийся в распоряжении у NASA. К сожалению, за два года никто так и не смог справиться с этими задачами.
После проведения 20 и 21 октября 2006 года второго этапа соревнований призовой фонд составляет уже 600 тысяч долларов. В отличие от прошлого года команде Университета канадской провинции Саскачеван (University of Saskatchewan, Саскатун) на этот раз удалось вплотную приблизиться к решению первой из поставленных задач. Их роботу-альпинисту не хватило лишь пары секунд, чтобы вовремя достичь самого верха.
С изготовлением троса все гораздо хуже. Для испытаний команды должны были представить двухметровое кольцо из сверхпрочного материала, которое специальная установка проверила бы на разрыв. К испытаниям была допущена всего одна команда, и ее трос лопнул при нагрузке в 606 кг, гораздо раньше образца от NASA, который порвать так и не удалось — эксперимент прекратили при нагрузке в 754 кг, потому что начали гнуться металлические элементы установки.
В конкурсах X Prize Cup не участвует американская компания LiftPort Group, получившая известность после весьма громкого обещания запустить космический лифт уже к 2018 году. (Позднее срок был перенесен на 2031 год.) Компания проводит собственные эксперименты, которые выглядят впечатляющими, но и их еще нельзя назвать однозначно удачными. Так, в начале 2006 года автоматизированный подъемник, работающий на аккумуляторах, взбирался в небо по прочному канату, натянутому с помощью трех воздушных шаров. Из полутора километров робот сумел преодолеть только первые 460 м. Тем не менее компания планирует вскоре провести повторные испытания на тросе высотой 3 км.
Таким образом, создание космического лифта пока находится за пределами возможностей современных технологий, и нет полной ясности, удастся ли со временем решить все проблемы, стоящие перед разработчиками. А потому нет и однозначного ответа на вопрос, стоит ли вкладывать серьезные деньги в проекты космических лифтов или лучше потратить их на дальнейшее развитие ракетной техники.
Опубликована: 26 января 2012
Copyright 2005 - 2014   Astrolog.zp.ua